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ABSTRACT

In the evolving landscape of power grids, where green transportation and intermittent clean energy 
play a crucial role, ensuring the security and reliability of the urban network is of utmost importance. 
However, the increasing volatility associated with these new energy sources poses a challenge to the 
traditional control methods. The large-scale integration of new energy in microgrids often leads to 
frequency instability and deviation in control performance standards. Addressing these issues, this 
paper introduces the SCQ(λ) algorithm, which accurately estimates the system’s state to enhance 
controller capabilities. To evaluate the effectiveness of the proposed SCQ(λ) algorithm, the authors 
employ a load frequency control model in our simulation. In this model, they introduce various load 
change disturbances, including sine waves, square waves, and step disturbances to simulate realistic 
scenarios encountered in power systems. Throughout the simulation, they observe a significant 
reduction in frequency deviation in the case of step perturbation, with the deviation value decreasing 
by 0.0096.
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INTRodUCTIoN

Currently, with the escalating global resource and environmental challenges, countries worldwide 
are increasingly embracing “dual-carbon” policies and initiatives. The emphasis on clean energy and 
electric vehicles signifies the prevailing trend towards upgrading the power supply infrastructure. To 
achieve the dual carbon objective, China is committed to constructing a new power system primarily 
reliant on new energy sources. However, the integration of a higher proportion of renewable energy 
sources brings about greater volatility and uncertainty in grid operations (Lam et al., 2020), which 
seriously affects the grid frequency stability and control performance standards (CPS). Microgrids 
offer a solution by enhancing the utilization rate of distributed new energy and effectively addressing 
electricity consumption challenges in remote areas, deserts, or islands. Moreover, microgrids provide 
a crucial avenue for integrating electric vehicles (EVs) and diverse forms of distributed green energy 
(Fan et al., 2022).
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In the context of load frequency control and regulation within microgrids, energy storage 
units play a vital role. In recent years, with the rapid popularization of EVs, these vehicles can 
be leveraged as controllable loads and distributed energy storage units (Chae et al., 2020; Iqbal 
et al., 2020). Through vehicle-to-grid (V2G) technology, EVs can absorb or transmit power back 
to the grid to regulate system frequency deviations in the event of grid disturbances or faults 
(Ziras et al., 2019; Chae et al., 2020). Literature (Li et al., 2019; Karkevandi et al., 2018) has 
established single-area and multi-area power system load frequency control models incorporating 
EVs. Various control strategies have been proposed, investigating the dynamic characteristics of 
system frequency control under these strategies. Simulation results indicate that EV involvement 
in power system frequency regulation can significantly enhance regulatory performance. However, 
the reliance on trial-and-error parameter adjustments in the Proportional-Integral control 
method employed in these models makes it challenging to achieve optimal control performance. 
Additionally, with the pursuit of the dual-carbon goal, extensive development and integration of 
new and clean energy sources have emerged as focal points of China’s energy landscape (Chen 
et al., 2020). As a result, the existing controller outlined in the aforementioned literature needs 
to be enhanced to address the stochastic disturbances stemming from large-scale new energy 
integration in islanded microgrids.

The rapid development of emerging machine learning techniques such as reinforcement 
learning and deep learning in recent years has provided new methods and ideas to solve the 
above problems. Barbalho et al. (2022) designed a microgrid controller based on the DDPG 
algorithm to achieve microgrid frequency stabilization by changing the output power of energy 
storage elements. Fan et al. (2022) proposed a DQN-based load frequency control strategy for 
microgrid with electric vehicle islanding, which effectively solves the microgrid frequency 
fluctuation problem under wind disturbance. Wang et al. (2018, 2021) proposed the design of 
load frequency controllers based on Q-learning and deep Q-learning. It is worth noting that 
the above methods are derived from classical Q-learning, which updates the Q-function by 
approximating the maximum desired action value. However, a major drawback of this approach 
is the overestimation of action values, leading to suboptimal results due to local optimization. In 
order to address this issue, Hasselt et al., (2015) proposed a Double Q-learning (DQL) algorithm. 
DQL improves upon classical Q-learning by decoupling the action and state of the Q-function 
and can effectively solve the overestimation problem of action value in Q-learning. However, the 
method is not completely unbiased and may introduce an underestimation bias in action values 
while solving the overestimation problem. This bias could potentially hinder intelligent agents 
from exploring optimal strategies in the stochastic environment.

In order to solve the problem of overestimation and underestimation, the SCQ algorithm introduces 
a self-correcting estimator. The main concept behind this estimator is to utilize prior information 
to correct the estimation process, thereby enhancing the estimation accuracy. By employing the 
self-correcting estimator, the SCQ algorithm is better equipped to select the most appropriate value 
estimator. Thus, it can effectively avoid the problems of overestimation and underestimation and 
improve the estimation accuracy. However, directly adopting the self-correcting estimator for every 
update may lead to computational inefficiencies and waste of computational resources. Moreover, this 
approach fails to provide adequate convergence conditions for SCQ. Considering that recalculating the 
entire model for each update can result in prolonged training times and slow convergence, a solution 
is needed to overcome these challenges. In order to tackle the above problem, the eligibility trace 
participation update estimator is introduced in the paper. This estimator leverages the eligibility trace 
decay coefficient, denoted as λ, to track the involvement level of state-action pairs, associating past 
state-action pairs with the current update process. Additionally, the cumulative rewards of previous 
state-action pairs are also taken into account, enabling a more comprehensive evaluation of the value 
of each state-action pair. To balance past and current learning, a decay factor is employed to diminish 
the influence of earlier state-action pairs, and the trace value is periodically cleared. This approach 
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facilitates improved convergence speed, as the decay factor governs the rate at which past state-action 
pairs decay, while resetting trace values prevents the enduring impact of outdated experiences on 
the learning process.

Therefore, this paper proposes a novel algorithm called multi-step self-correcting Q-learning with 
eligibility traces (SCQ(λ)) which aims to address the issues of overestimation in traditional Q-learning 
and underestimation in double Q-learning. By achieving a balance between these two extremes, the 
SCQ(λ) algorithm enables the intelligent agent to select and explore action values with moderate 
optimism, thereby improving the control accuracy of the unit. Additionally, the incorporation of 
eligibility traces in the SCQ(λ) algorithm enhances the convergence speed, allowing the controller 
to effectively handle the time delay between command signals and unit responses. This reduction 
in time delay impact results in a more reliable and efficient system. To evaluate the performance of 
the SCQ(λ) controller, a two-area load frequency control model is constructed, considering factors 
such as electric vehicles, wind power, and energy storage systems. A sinusoidal wave perturbation 
is applied for pre-learning, and the results show that the SCQ(λ) controller has a faster convergence 
speed. In order to simulate the system facing a strong stochastic perturbation problem, the step and 
square wave perturbations are applied to the model, and the simulation results show that the SCQ(λ) 
controller has higher CPS performance, smaller frequency deviation, reduced regional control error, 
and faster convergence.

MICRoGRId CoNTRoL ModeL wITH eVS

Load Frequency Control Model for Micro Gas Turbine
Micro gas turbine (MT) is a kind of small thermal generator with high reliability and safety, which 
is characterized by high energy conversion rate, low emission, and environmental friendliness. 
These qualities make them a popular choice in microgrids (Hongxin et al., 2021). Recognizing their 
significance, this paper focuses on MTs as the primary frequency modulation unit. The dynamic 
characteristic functions of the fuel system and turbine system of the micro gas turbine can be described 
as follows:
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where Tf is the time constant of the fuel system and Tt is the time constant of the turbine system.
The continuous time transfer function model of the MT is shown in Figure 1. ∆f is the system 

frequency change value; ∆uMT is the load frequency control signal received by the micro combustion 
engine; ∆XMT is the valve position change signal received by the turbine system; R is the governor 
system parameter; ∆PMT is the micro combustion engine power output signal.

Load Frequency Control Model for energy Storage Systems
In this paper, we address the issue of the stochastic and fluctuating nature of renewable energy access 
systems. We recognize that MTe alone may not be sufficient to provide enough power for maintaining 
the active balance of such systems. Therefore, we propose the integration of a battery energy storage 
system (BESS) to compensate for the power fluctuations and reduce frequency fluctuations. Huang 
et al. (2015) found that the participation of BESS systems in frequency modulation is superior to 
other types of energy storage systems, such as flywheel energy storage systems, superconducting 
electromagnetic energy storage systems, and capacitor energy storage systems.
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Huang et al. (2015) studied the battery energy storage power model for grid frequency regulation 
and proposed a simulation model featuring a well-structured framework that effectively addresses 
both primary and secondary frequency regulation requirements of the system. In this paper, we utilize 
the energy storage battery simulation model introduced in their literature to represent the BESS 
simulation model. The BESS frequency response model contains various components such as the 
power conversion system (PCS), response delay-time conversion, energy storage link, and charge 
limiting. As shown in Figure 2, ∆Pord-BESS is the power output value, where positive values indicate the 
discharge of energy from the BESS to the system and negative values signify the charging of energy 
from the system to the BESS. When the BESS receives the power command from the load frequency 
controller, the signal undergoes processing through the PCS response delay-time conversion link, 
and the system generates the power demand ∆Preq. Subsequently, this power demand value passes 
through the storage link to produce the output power ∆Pout as well as the charging state ∆Qsoc. The 
power output value of the BESS corresponds the power output value of the system, and the power 
output value of the system is the power demand value of the system.

The BESS needs to satisfy the following constraints during operation:

0 ≤ ≤P Pc c
maxη  (3)

0 1≤ ≤ −( )P Pd d
maxη  (4)

Pc and Pd denote the charging and discharging power of the BESS, respectively, η and 1-η denotes 
the charging and discharging state variable of the BESS, respectively, with the value of 1 indicating 
charging and 0 indicating discharging. Pc

max and Pd
max represent the maximum and minimum charge 

and discharge power, respectively.
Qsoc,max and Qsoc,min are the upper and lower boundaries in the limiting link, and the magnitude 

of their values determines whether ∆Pout can really be output or not. When Qsoc crosses the limit, 
the limiting link avoids the BESS from generating charging or discharging behaviors, and the upper 
and lower boundaries of the limiting link in this paper are set to 20% and 80%, respectively. The 
expression for ∆PBESS is as follows:

Figure 1. Load Frequency Control Model for MT

Figure 2. Load Frequency Control Model for BESS
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LoAd FReQUeNCy CoNTRoL ModeL FoR eLeCTRIC VeHICLeS

In the context of China’s goal of carbon peaking and carbon neutrality, wind power and photovoltaic 
are expected to become the main source of clean energy, gradually replacing current auxiliary energy 
sources. However, the variability of weather conditions poses a challenge, leading to the increasing 
issue of wind and solar energy curtailment. To address this problem, EVs offer several advantages, 
including fast response, flexible dispatching, and the ability to serve as both energy sources and storage 
units. One promising application of EVs is their potential to contribute to peak shaving, valley filling, 
and auxiliary frequency and voltage regulation through vehicle-to-grid (V2G) technology (Boglou et 
al., 2023; Boglou et al., 2022). Khokhar & Parmar (2022) designed a new adaptive intelligent model 
predictive control scheme to regulate the system frequency by managing the state of charge of EV 
batteries. This control approach enables EVs to participate in the primary frequency regulation of 
the power system.
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where ∆P1 is the load disturbance, ∆Pm is the total generator output power, Ms is the inertia 
constant, D is the damping coefficient, TE is the time constant, KE is the sag control parameter, and ∆f 
is the system frequency deviation. In order to ensure the longevity and performance of EV batteries, 
it is important to minimize the frequency of charging and discharging operations. This is due to the 
inherent characteristics of batteries, as frequent fluctuations in their charge levels can negatively 
impact their health. As a solution to address this issue, a dead band module is incorporated into the 
EV model, allowing it to refrain from participating in frequency regulation when the system frequency 
experiences minor fluctuations.

The charging and discharging power of the EV is as follows:
When the frequency deviation ∆f fdz≤ :
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When the frequency deviation ∆f fdz> :
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In the formula, fdz is the dead zone of frequency modulation. If the system frequency deviation 
∆f is within the dead zone range of −


f fdz dz, , the EV will not participate in frequency modulation 

service and focus solely on charging to fulfill the power requirements of their users. Pmax is the 
maximum charging and discharging power of an EV, CEV is the rated capacity of an EV, SOCe is the 
expected SOC value of an EV, tin and tout are the moments when an EV enters into the grid to participate 
in frequency modulation and exits from the grid.

wind Power Model
Wind power generation is mainly affected by wind speed, which is characterized by intermittency and 
volatility. Currently, the Weibull distribution is widely used to model wind speed magnitude (Zhao, 
et al., 2018), and its probability density function expression is as follows:
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Where x is the random variable; λ is the scale factor and k is the shape parameter.
The output power of a wind turbine is related to the wind speed as follows:
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where Vt is the wind speed at moment t, Vc is the fan cut-in wind speed, taken as 4m/s, Vr is the 
rated wind speed of the fan, taken as 12m/s, Vf is the fan cut-out wind speed, taken as 24m/s, Pr is 
the rated output power of the fan, taken as 20kW.

LoAd FReQUeNCy CoNTRoL ModeL FoR MICRoGRIdS

The interconnected power system, composed of multiple regions, relies on an effective control 
method to ensure stability. One commonly used approach is tie line bias control (TBC). TBC takes 
into consideration both the system frequency deviation and the contact line power deviation, making 
it a comprehensive representation of power system frequency stability. In addition, TBC allows each 
control region to account for load changes in neighboring regions, enabling the whole network to 
achieve optimal power-frequency dynamic performance. To enhance the existing model, this paper 
incorporates EVs and energy storage modules into the IEEE two-region standard model (Mansour 
et al., 2022). The modified model is depicted in Figure 3.

In Figure 3, ΔfA and ΔfB are the frequency deviation of region 1 and region 2, respectively, B1 
and B2 represent the frequency deviation coefficients, ACE is the regional control deviation, R is 
the speed control coefficient, Tg is the regulator time constant, Tt is the microfuel time constant, 
ΔPGA and ΔPGB symbolize the changes in the power output of the unit, and KP is the active frequency 
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conversion factor of the system. TP is the time constant of the power system, T12 is the synchronization 
coefficient of the contact line, and a12 signifies the power conversion coefficient.

The simulation model parameters are shown in Table 1.

Modeling of SCQ(λ) Algorithm for Microgrid Load Frequency Control
Self-Correcting Q Learning
Temporal-difference learning is an advanced algorithm used in reinforcement learning. It is a model-
free approach that estimates the value function, which is a crucial component in decision-making 
processes. TD learning can be divided into two main categories: single-estimator and dual-estimator 
methods.

Q-learning algorithm is widely recognized as a prominent single-estimator method in 
reinforcement learning. The term “single-estimation” refers to the practice of using the maximum 
estimate from a set of estimates to approximate the expected value. Introduced by Watkins in 1989, 
Q-learning demonstrates exceptional self-learning capabilities, aiming to discover state-action optimal 
policies that maximize cumulative rewards (Watkins & Dayan, 1992). Nonetheless, the Q-learning 
algorithm is subject to maximization bias. This bias emerges from the tendency to use the maximum 
action value as an approximation for the maximum desired action value. Consequently, action values 
may be overestimated, resulting in overly optimistic estimates (Wu et al., 2021).

To solve this problem, Hasselt (2010) proposed the Double Q-learning algorithm, which utilizes 
two Q-functions as part of the learning process. The key feature of this algorithm lies in its ability to 

Figure 3. Two-Region LFC Model
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sample actions by incorporating the values from both Q-functions. By doing so, the overestimation 
problem of action values can be effectively mitigated. However, it’s worth noting that this approach 
may result in an underestimation of action values. Overall, the Double Q-learning algorithm stands 
out as a prominent double estimator method in the field.

To address the challenge of balancing overestimation and underestimation of action values, 
recent research by Zhu & Rigotti (2020) proposes a novel self-correcting estimator. This estimator 
is designed to estimate the maximum expected value, effectively mitigating the issues caused by 
overestimation with a single estimator and underestimation with a double estimator.

According to equation 14, two independent unbiased estimation sets E aQ sn
′( )



,  as well as 

Q sn+
′( )1
, a  of Q sn+

′( )1
β , a  are utilized to construct another unbiased estimation set:

Q s a Q s a Q s an n n
′ ′ ′( ) = ( )+ −( ) ( )+ +, , ,τ τ β

1 1
1  (12)

where τ ∈ ( )0 1,  denotes the degree of correlation between Q sn+
′( )1
, a  and Q sn+

′( )1
β , a . The 

smaller t  is, the lower the degree of correlation is. When t  tends to zero it is not correlated at all. 
The bias of the self-correcting estimator Q sn

′( ), a  is always between the positive bias of the 
single estimator and the negative bias of the dual estimator, which can be achieved by balancing the 
overestimation due to the single estimator as well as the underestimation due to the dual estimator. 
By choosing the appropriate parameter β, the maximum bias can be eliminated completely. Compared 
to the Double Q-learning algorithm, the SCQ algorithm chooses value functions with different time 
steps, which eliminates the need for updating two value functions simultaneously and reduces 
computational as well as memory costs.

Construction of The SCQ(λ) Algorithm
In this paper, a novel multi-step fast convergence algorithm SCQ(λ) is proposed based on the 
SCQ algorithm incorporating eligibility traces using discrete-time Markov decision process as 
the mathematical basis to solve the time confidence allocation problem of SCQ and improve the 
convergence speed of the algorithm (Sutton, 1988; Sutton & Barto, 1998) . Eligibility traces play a 
crucial role in propagating error updates in reinforcement learning algorithms. They act as a form 
of memory, preserving information about past events and gradually decaying over time. When a 

Table 1. Parameters of Two-region LFC Model

Parameters Area 1 Area 2

nEVs 100 100

CE 32 kW•h 32 kW•h

SOCmax 0.9 0.9

SOCmin 0.1 0.1

SOCin N(0.4,0.01) N(0.4,0.01)

SOCp N(0.8,0.01) N(0.8,0.01)

η 0.92 0.92

Pmax 7kW 7kW

R 0.05 0.062

B 20.6 16.9
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state is accessed or an action is performed, the eligibility traces remember these events and allow 
the system to update the credit value or assign errors specifically to relevant states or actions. By 
utilizing eligibility traces, the algorithm can focus its updates on the states and actions that directly 
contributed to the TD error. This selective approach avoids unnecessary updates to unrelated elements 
and accelerates the convergence of the algorithm. The errors are propagated throughout the entire 
state space, ensuring that only the accessed states and actions are influenced during the Q-value 
update process (Fu et al., 2013).

The commonly used eligibility traces are cumulative traces, substitution traces, and Dutch traces, 
among which substitution traces have a wide range of applications in reinforcement learning. The 
updated formula of the algorithm is as follows:

e S A
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,
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= =
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where δ is the error in the Q-value function; et  denotes the eligibility of the state-action pair, 
indicating its contribution to the generation of δ. The magnitude of the eligibility determines the 
extent of the updates made, with larger eligibility values assigned a higher level of temporal credence. 
Conversely, state-action pairs with smaller eligibility values receive a lower temporal credence, 
implying that they are subject to reduced rewards or penalties from the current event. Here, γ is the 
discount factor, where 0 1≤ ≤γ ; λ is the decay factor, where 0 1≤ ≤λ . After a number of iterative 
updates, the value matrix converges to the optimal Q-value matrix with a probability of 1.

Defining β τ= −( )1 1/ , equation 14 can be rewritten as:

Q s a Q s a Q s a Q s an n n n+ + +
′ ′ ′ ′( )= ( )− ( )− ( )



1 1 1

β β, , , ,  (17)

However, since Q sn+
′( )1
, a  is not available at the moment of time step n, to solve this problem, 

we utilize Q sn−
′( )1
, a  and Q sn

′( ), a  from the previous update step instead of Q sn
′( ), a  and 

Q sn+
′( )1
, a :

Q s a Q s a Q s a Q s an n n n+ + −
′ ′ ′ ′( ) = ( )− ( )− ( )



1 1 1

β β, , , ,  (18)

The inclusion of value functions with varying time steps in the updating process signifies a 
progressive self-adjustment of the estimator’s bias. This occurs as the disparity between the value 
function at time step n and the value function at time step n-1 diminishes progressively.

After that we use ˆ ,a argmaxQ sn
β β= ( )′ a  for action selection and Q s an

β β′( ), ˆ  to estimate the 
value of the next step:

Q s a Q s a r Q s a Q s an n n n+ ( ) = ( ) + ( )− ( )





′
1
, , , ,ˆα γ β  (19)
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State Space and Action Space definitions
In terms of grid frequency performance evaluation, the current evaluation standards implemented in 
China’s power grid are based on the control performance standard (CPS) 1 and 2 used in the North 
American power grid.

This section may be divided by subheadings. It should provide a concise and precise description 
of the experimental results, their interpretation, as well as the experimental conclusions that can be 
drawn. CPS1 and CPS2 are key performance indicators used in power system control. CPS1 assesses 
the long-term performance by measuring the ACE and the frequency deviation of the control area 
every minute. On the other hand, CPS2 focuses on the short-term performance by measuring the 
average ACE value during 10-minute intervals. The criteria for CPS1 and CPS2 are outlined below:

CPS1≥100%,CPS2≥90%。 

In an automated power generation system, the smart controller takes input from the actual grid 
dispatch in the form of total power generation regulation commands. The state space encompasses 
grid frequency deviation and CPS dataset, while the action space comprises power fluctuation dataset. 
The controller processes this information and updates the action set, optimizing it based on the state 
value and reward value. Ultimately, the controller outputs an optimal control signal to ensure the 
power system’s frequency dynamic balance is maintained.

Reward Function definition
To ensure the stabilization of power fluctuations within an acceptable range and optimize the long-
term benefits of CPS, this paper proposes a reward function that integrates ACE and CPS1 through 
a linearly weighted combination. The reward function for each regional grid is defined as shown in 
equation 22.

R s s a ACE t
CPS t

n n n− −( ) = − ( )



 −

−( ) ( )





1 1

2 1 1

1000
, , η

η
 (20)

where ACE(t) is the instantaneous value of ACE of the system at time t, CPS1(t) is the value of 
CPS1 of the system at time t, η is the weight value of ACE, 1-η is the weight value of CPS1, and the 
value of η is taken as 0.5 in this paper.

Parameter Setting
The system parameters need to be set appropriately, among other things:

Learning rate α 

In order to enhance the stability of the algorithm, this parameter is utilized where the velocity 
of updating the value function is adjusted based on the value of α. Specifically, when α is large, the 
speed of updating the value function is increased, and vice versa when α is small. This approach 
effectively enhances the overall stability of the system. To strike a balance between learning speed and 
stability, a number of simulations have demonstrated that setting α to 0.1 yields optimal performance 
for the control system.

Iterative strategy learning factor β 
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It is used to measure the degree of influence of the action selection strategy on the iterative 
strategy update, where a larger β speeds up convergence and a smaller β ensures that the system is 
able to fully explore other actions in the space. In this paper, β is chosen to be 0.5.

Attenuation factor for eligibility traces λ 

It is used to assign credits to state-action pairs. A smaller value of λ results in a lower assignment 
of reputation, while a larger value of λ leads to a slower decay of reputation for the previous action. 
In our study, we have set λ equal to 0.95.

Discount factor γ 

In order to strike a balance between reward weights, the parameter γ is employed. When γ 
approaches 1, the intelligent system places more emphasis on long-term rewards. Conversely, when 
γ approaches 0, the system prioritizes immediate rewards. For the purposes of this study, we have 
set γ at a value of 0.9.

SIMULATIoN ANALySIS

Pre-Learning Phase
In reinforcement learning, it is essential for intelligent systems to undergo a preliminary phase 
known as randomized trial and error pre-learning. This pre-learning phase, which is the focus of 
this paper, involves the introduction of a sinusoidal load perturbation. Specifically, a sinusoidal load 
perturbation with a period of 1200 seconds, an amplitude of 1000kW, and a duration of 20000 seconds 
is implemented in order to train SCQ(λ) and facilitate its convergence towards the optimal policy.

Figure 4 shows the control performance curve of the SCQ(λ) controller during the pre-learning 
phase in region A. Figure 4(a) shows the load perturbation curve, from which it can be seen that the 
SCQ(λ) controller can basically track the upper load perturbation around 1300s. Figure 4(b) shows 
the average value of 10min CPS1, which is 195.5494% in region A of the figure, and the 10min 
assessment criterion of CPS1 is kept above 185%. Figure 4(c) shows the frequency variation curve 
under sinusoidal disturbance, and the maximum power deviation in the region is 0.0056 Hz, which is 
much smaller than the actual requirement of 0.2 Hz. Figure 4(d) indicates the 10min average curve of 
the ACE with a value of 1.7448kW, and the simulation results show that the 10min assessment index 
value of the ACE always stays within 2kW, which shows that the designed controller has strong stability.

The 2-parameter | , , |Q s a Q s aik k( )− ( ) ≤−1
2  of the Q matrix (ς=0.0001 is the specified criterion) 

is chosen in this paper as the termination criterion for pre-learning to reach the optimal policy. Figure 
5 shows the convergence effect of the SCQ(λ) algorithm in region A in comparison to the Q, SCQ, 
Q(λ) intelligent algorithms. As depicted in the figure, the SCQ(λ) algorithm can significantly improve 
the convergence speed.

In summary, extensive training explorations have demonstrated that the SCQ(λ) controller has 
successfully approximated the optimal CPS control strategy. As a result, the SCQ(λ) controller is 
ready to be effectively deployed in real-world environments.

Simulation Analysis for different Relative Perturbation Intensities
During online operation s, it is essential to simulate a sudden increase in load in the grid and introduce 
a step load perturbation to the two-region model. This paper proposes a controller design that utilizes 
four algorithms: Q, Q(λ), SCQ, and SCQ(λ). The objective is to compare and analyze the performance 
of the two-region model under different controllers by applying a step load perturbation with an 
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amplitude of 1000kW. The obtained control performance curves for the A-region, based on various 
algorithmic controllers, are illustrated in Figure 6.

In Figure 6(a), the comparative effect of frequency change curves for the four intelligent 
algorithms is displayed. The absolute change in frequency, |∆f|, for each algorithm is recorded as 
follows: Algorithm 1 yields 0.0110Hz, Algorithm 2 yields 0.0030Hz, Algorithm 3 yields 0.0055Hz, 
and Algorithm 4 yields 0.0014Hz. Notably, SCQ(λ) exhibits a significantly reduced |∆f| compared 
to the other algorithms. Figure 6(b) presents the average values of 10-minute ACE (Area Control 
Error). The respective values for each algorithm are as follows: Algorithm 1 yields 19.2539kW, 
Algorithm 2 yields 4.9626kW, Algorithm 3 yields 7.3493kW, and Algorithm 4 yields 3.8191kW. 
Figure 6(c) illustrates the average variation curve of 10-minute CPS1 (Control Performance Score 

Figure 4. Pre-Learning Effects of the SCQ(λ) Controller
(a) Load Disturbance Curve, (b) Mean value curve of 10minCPS1, (c) Frequency variation curves 
under sinusoidal perturbation, (d) 10min mean curve of ACE.

Figure 5. Comparison of Convergence Effect of Pre-Learning Stage of Each Algorithm
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1) with the values derived from the four intelligent algorithms: 199.297%, 199.675%, 199.552%, and 
199.876%, respectively. Table 2 displays the control performance indexes of the four algorithms under 
step load perturbation. It is evident that the SCQ(λ) algorithm outperforms the other algorithms in 
all performance indexes, showcasing its exceptional control performance.

An amplitude of 1000 kW square wave load disturbance is applied for a duration of 24 hours 
to simulate extreme cases of load surge and smoothness, which is done in order to further validate 
the control performance of the proposed algorithm. To evaluate the performance of the controllers 
for the four algorithms (Q, Q(λ), SCQ, and SCQ(λ)), a 5-hour load perturbation is introduced as the 
evaluation period. Table 3 presents the performance assessment indexes of these four algorithms in 
region A. The simulation results demonstrate that the SCQ(λ) controller maintains stable control 
effectiveness even when subjected to random load fluctuations.

dISCUSSIoN

In order to address the issue of frequency fluctuation in microgrids resulting from the integration 
of large-scale new energy sources into the power grid, this research introduces a reinforcement 
learning-based SCQ(λ) control algorithm. Additionally, a two-region load frequency control model 
is developed, which includes electric vehicles, wind power, MTs (microturbines), and battery energy 

Figure 6. Simulation Curves of Different Algorithms Under Step Load Disturbance
Note. (a) Frequency change curve, (b) Mean change curve of 10minACE, (c) Curve of change in 
mean value of 10minCPS1

Table 2. Different Algorithms Control Performance Based on Step Perturbation

Algorithms |∆f|/Hz ACE/kW CPS1/%

Q 0.0110 19.2539 199.297

Q(λ) 0.0030 4.9626 199.675

SCQ 0.0055 7.3493 199.552

SCQ(λ) 0.0014 3.8191 199.876
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storage. Conventional reinforcement learning approaches often suffer from the problems of state 
action function value overestimation and underestimation. To overcome these limitations, this study 
proposes the utilization of a self-correcting estimator which enhances the accuracy compared to the 
Q-learning algorithm. Moreover, considering the inefficiency of the self-correcting estimator when 
updated on a per-pass basis, this paper incorporates the eligibility traces strategy in combination 
with the self-correcting estimator. Consequently, the SCQ(λ) algorithm is introduced, significantly 
improving the convergence performance of the overall control algorithm.

In the simulation analysis, sine wave, step perturbation, and square wave perturbation are used 
for simulation experiments in this paper. According to the simulation results, the SCQ(λ) controller 
shows excellent exploratory capability, which can effectively cope with the load frequency control 
problem of the microgrid under strong stochastic conditions and significantly improve the frequency 
control rate and effect.

Specifically, when subjected to step perturbation, the SCQ(λ) controller achieves a frequency 
deviation of only 0.0014 Hz. Furthermore, it demonstrates an average 10-minute ACE (Area Control 
Error) of 3.8191 kW and a corresponding 10-minute CPS1 (Control Performance Standard 1) value 
of 199.876%. When exposed to square wave perturbation, the SCQ(λ) controller outperforms the 
Q controller by achieving a reduction of 58.7% in frequency deviation. Additionally, it exhibits a 
decrease of 51.9% in the 10-minute ACE and an increase of 13.68% in the 10-minute CPS1 value 
compared to the Q controller. These simulation results demonstrate that the SCQ(λ) controller 
surpasses other controllers in all performance indices when enhanced random perturbation is 
applied, thus effectively ensuring system frequency stabilization and dynamic balance of power 
exchange in the contact line.

The simulation model includes the integration of electric vehicle and wind power generation 
models, among others. However, it is worth noting that the model is not connected to the actual 
power grid. Future research will focus on the development of relevant techniques to address 
this limitation.

Table 3. Different Algorithms Based on Square Wave Perturbation Control Performance

Algorithms |∆f|/Hz ACE/kW CPS1/%

Q 0.02725 67.163 180.21

Q(λ) 0.01383 39.517 191.84

SCQ 0.01345 39.426 192.29

SCQ(λ) 0.01123 32.291 193.89
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